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Abstract 

We discuss the questions of unitarity and causality in the ordinary and charge-conserving 
hadronic bremsstrahlung models, which describe quasielastic collisions of two primary 
particles with the emission of secondary charged pions. While the ordinary hadronic 
bremsstrahlung model satisfies the usual conditions of unitarity and causality, the charge- 
conserving hadronic bremsstrahlung model does not. The newly formulated production 
unitarity (which takes into account the fact that the secondary pions never occur in the 
initial state) is satisfied by both models. A new notion of the production causality (which 
seems to be a natural causality property of hadronic bremsstrahlung models) is found to 
be formally satisfied by both models. In view of the fact that the charge-conserving hadronic 
bremsstrahlung model gives a good description of the gross features of particle production 
whereas the ordinary model does not, we suggest that some causality requirements may 
in general pose overly stringent conditions on theories describing physical phenomena. 

t. Introduction and Preliminaries 

In this article we wish to investigate the extent to which the usual conditions 
of unitarity and causality can hold for high-energy collisions when these collis- 
ions are described by hadronic bremsstrahlung models. 

In hadronic bremsstrahlung models, which describe the quasielastic collisions 
of two primary particles (e.g., protons) accompanied by the emission of 
secondary particles (e.g., pions whose energies are limited to values much less 
than those of protons), the S matrix is factorized as (Gemmel and Kastrup, 
1969; Soln, 1973) 

s = s , s~  (1 . i )  

With $1 and $2 satisfying, respectively, 

(in; sec I $1 = (in; sec[ (1.2a) 
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(in;primIS2 = ~ (0 [S2[in;n(sec))( in;n(sec);priml (1.2b) 
n(sec) 

where I prim; in } and I sec; in } are any "in" states of primary and secondary 
particles, respectively, the summation goes over a complete set of "in" 
secondary particle states, and we do not demand that the $2 matrix be transla- 
tionally invariant. Relations (1.2a) and (1.2b) mean that the $1 and S 2 matrices 
can be expanded in terms of free pfield "in" operators of primaries and second- 
aries, respectively. It is customary to ignore the spin and isospin of primaries 
and often the isospin and parity of secondaries. From (1.1), (1.2a), and (1.2b) 
it is easy to see that as far as conditions of unitarity and causality are concerned, 
the $1 and $2 matrices can be discussed separately. In what follows we shall 
assume that the $1 matrix satisfies the usual conditions of unitarity and 
causality (Bogoliubov and Shirkov, 1959). 

It is convenient to associate with $2 the inelastic coupling constant g and 
write 

S2(g)=S2°(g)R2(g), S2°(g) = (0 IS2(g ) 10) (1.3) 

where we require 

$2°(0) = 1, R2(O) = 1 (1.4) 

Denoting the initial and final momenta of primaries by Pi, Pi (i = 1,2) and the 
final momenta of secondaries by ki (i = 1 , . . . ,  n), then according to (1.1), 
(1.2a), (1.2b), and (1.3), we have 

(kl . . . .  ,kn;p'bp' 2 ISIpl,P2}=(p'l,p~ [Sa lpl,p2)Se°(g)(ka . . . . .  knlR2(g) 10} 
(1.5) 

We can write 

(Pl,P'2 IN tpl,p2 ) = N ( s ,  t)6(4)(pl  +P2  - P l  - P ; )  (1.6) 

where s is the c.m. (center of mass) energy squared and ( - t )  is the invariant 
momentum transfer squared of primaries. From (1.5) we can interpret 
S2°(g) ( kl . . . . .  kn IR2(g) I 0 ) as the conditional (probability) transition amplitude 
for the emission of n secondaries subject to the hypothesis of the occurrence 
of the "primary" process Pl + P2 "+ P~ + P2- Consequently (kl . . . . .  kn ~S2(g) I O) 
will depend on (p;, p; IS11pa, P2 ) or equivalently on s and t [see relation (1.6)]. 

( ' , One calls Pl, P2 ISa lpt, P2 ) a "potential" transition amplitude since, according 
to (1.4), it is the only existing amplitude in the limit g ~ 0 (Gemmel and 
Kastrup, 1969). 

There is one thing that is prominent for any hadronic bremsstrahlung model 
with assumptions (1 .I), (1.2a), and (1.2h): the division of particles into 
primaries and secondaries. As we can see from (1.5), primaries can occur in 
both the initial and final states, while secondaries will occur only in the final 
state. Thus the initial state is the vacuum as far as secondaries are concerned. 
This fact will be taken into account when we discuss the unitarity and the 
causality of the $2 matrix. 
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Let us now assume that we are interested in the production of secondary 
charged pions (say in pp collisions) and that it is of no concern to us what 
the charges of individual pions are. Then we can describe such a system with 
a single field operator, q~in(x), which we can call a charge number field 
operator (Soln, 1974a, b). One can discuss the production of secondary 
charged pions within the framework of two hadronic bremsstrahlung models: 
the ordinary hadronic bremsstrahlung model in which the charge and parity 
conservations are ignored and the charge-conserving hadronic bremsstrahlung 
model, which, in addition to charge conservation, obeys also the parity con- 
servation (Gemmel and Kastrup, 1969; Soln, 1973, !974a, 1974b). The S 2 
matrix for the ordinary hadronic bremsstrahlung model we denote with S; 
and write (Soln, 1974a, b) 

s ; ( g )  ,o , = (g)R2(g) 

R~(g)= " exp ig j a4x/(x)~in(X): 
where/(x) is the real c-number source of secondaries due to primaries [see the 
discussion after relation (1.6)] and AF(X -- y) is the Feynman Green's function 
of secondaries. For the charge-conserving hadronic bremsstrahlung model, the 
S~ matrix (denoted as S~') is given as (Soln, 1974a, b) 

s ; ' ( g )  ,,o ,, = s 2  (g)R2(g) 

S;'°(g) = [cosh/g2 ~ d4xd4yco,(x)A +(x - y)co(y)]-'/2 (1.8) 

R'2'(g) = : coshg Sd4xco(x)C~in(X): 

where co(x) is generally a complex c-number source of charged secondary pions 
due to primaries and A +(x - y)  is the positive frequency A function satisfying 
the homogeneous Klein-Gordon equation in which the mass is that of the 
secondary particle. Let us also point out that in view of the discussion after 
relation (1.6), both ](x) from (I .7) and co(x) from (1.8) depend in principle 
on s and t [see relation (1.6)]. As we shall see in detail later the $2 matrix 
from (1.7) satisfies the usual conditions of unitarity and causality while the 
S; r matrix from (t .8) does not. However, the S;' matrix will satisfy what we 
shall call the production unitarity and the production causality. 

In order to be able to discuss briefly the question of charge conservation, 
we define the number operator for the charged secondary pions as 

N ( d3k a+(k)a(k) (1.9) 
= : ~  

where a (k) and a+(k) are the annihilation and creation operators associated 
with the charge number field operator 4~in(X)- With the help of N we define 
a new operator U as 

U = exp [-iruV] (1.10) 
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Now it is not difficult to see that the charge conserving $2 matrix must satisfy 

US2 (g)U -1 = S2(g) (1.11) 

since the charge conservation demands that the initial and final pion states 
e - 1  t +  give the same eigenvalues for U. As we can see from (1.7), US2(g)U = $2 (g). 

Thus the ordinary hadronic bremsstrahlung model when applied to the pro- 
duction of charged pions (say in pp collisions) violates the charge conservation. 

• tt - 1  tl . However, from (1.8) we easily see that US2(g)U = S2(g), and indeed the 
charge-conserving hadronic bremsstrahlung model conserves the charge in the 
production of charged secondary pions. Taking into account that the c-number 
sources j(x) and w(x) can only be scalars, we see that under parity transformation 
[~bin(X, x 4) -+ -4)in ( -x ,  x4)] ,S~(g) -+ S'2+(g) and S;(g) ~ S~(g). Consequently, 
we do not have parity conservation in the ordinary hadronic bremsstrahlung 
model while in the charge conserving hadronic bremsstrahlung model we do. 
It is quite clear that from the practical point of view the $2' matrix is more 
attractive than the S~ matrix in discussing the production of charged secondary 
pions, particularly in view of the fact that the S~' matrix gives at once a very 
good agreement with experiments in the so-called lower-energy regime (Soln, 
t974a, b) for the multiplicity distribution functions for secondary charged 
pions (Sotn, 1973, 1974a, b) and the correlation parameters for the secondary 
negative pions (Soln, 1974a, b, 1975). Since S'~' violates the usual conditions 
of unitarity and causality, we inquire whether these conditions are too strong 
for high-energy collisions and can be replaced with weaker ones. 

2. Production Unitarity 

As is known, in general the S matrix elements are probability amplitudes 
to find the system at t -+ oo in some state [ out; b ) when some state [in; a)  
at t -+ _oo has been given. More specifically 

[ in ; a )=  ~ [ou t ;b ) f i n ;b [S l i n ;a )  (2.1) 
(b) 

where the common indices a and b specify states according to a complete set 
of commuting observables. The differences between states [ in; a )  and [ in; a ) 
(or [ in; b )) is that 

Y. [ in ; a ) ( in ;a l  = 1 (2.2) 
while (a) 

l in ;o t ) ( in ;a l  =P  (2.3) 
(~) 

where P is essentially the projection operator on some subspace of the whole 
Hilbert space. In other words, while the states denoted as lin; a) or l in; b ) are 
complete, the states denoted as [ in; a )  or t in;/3) are not, and in the formal 
limit a -~ a, P from (2.3) goes into 1. Of course we do demand the orthonormality 
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of states [in; a>; thus from (2.1) we have 

<in;13lin;a> = "~ < i n ; ~ i S + l i n ; b > < i n ; b [ S l i n ; a >  
(b) 

= (in;/31S+S [ i n ; a )  (2.4) 

which is what we call production unitarity. From the physical point of  view, 
the projection operator P allows only those states that are physically accessible 
as initial states at t -+ _oo. Since P t in; a )  = i in; a ), P I in;/3 ) = t in;/3 ), we can 
also write (in;/3 [S+S l in; a )  in (2.4) as (in; t3 IPS+SPIin;  a) .  Consequently we 
can define a new S matrix (denoted by £)  as 

Z = SP (2.5) 

for which the production unitarity can be written as 

2+2  = PS+SP = P (2.6) 

The advantage of  (2.6) over (2.4) is that (2.6) formally is valid in the whole 
Hilbert space. It is clear that we could have started immediately the whole 
formulation of  the production unitarity in terms of t;, writing instead of  (2.1) 

[ i n ; a ) =  ~ [ o u t ; b } ( i n ; b i £ l i n ; a )  (2.1') 
(b) 

where obviously 

I out; b ) = 2 + j in; b ) =-PS+I in; b ) (2.7) 

which is consistent with I in; a )  - P I  in; a).  Clearly, relation (2.7) allows us 
to discuss only matrix elements of the type (in; a t out; b ) which reduces to 
(in; a IS + I in; b }. 

It is quite clear that if  the S matrix satisfies the usual condition of  unitarity 
S+S = 1, then production unitarity (2.6) for the ~ matrix is automatically 
satisfied. 

Let us now apply this general type of  formalism to our hadronic bremsstrahlung 
models. In the discussion, we will concentrate mostly on $2 matrices, since we 
are assuming that, in principle, $1 matrices satisfy usual unitarity and causality 
conditions. 

The S~ matrix of  the ordinary hadronic bremsstrahlung model [see (1.7)] 
satisfies the usual unitarity condition 

t +  t & (g)&fg)= 1 (2.8) 

Let us demonstrate this. First, from S ; ( g )  we define S;(g;  v,(x)) by changing 
¢in(x) to ~bin(x ) + r/(x) in (1.7): 

S;  (g; r/(x)) = S;  (g) exp tg f d4xj(x)r l (x)  (2.9) 

Now (2.8) requires that 

( kr + 1 . . . . .  kn I S;+(g)S'2(g)lkl  . . . . .  k~) = ( kr + 1 . . . . .  kn I ka . . . . .  kr) 
(2.10) 
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from which it is not difficult to deduce that in general (for details of this kind 
of calculation see reference Bogoliubov and Sb~kov (I959)) 

8 t ~-b r [ 
8~7(xl)" " - ~rt(xt) <0tS2 (g; rl(x))S2(g; r/(x))l O> = O, l = 1 , . . . ,  n (2.1 1) 

I ~ = 0  

Since n is arbitrary, so is l, and consequently from (2.1 1) we conclude that 
(0 t S;+(g; ~)S;(g; ~7) 1 0 > must be independent of rl. Since in general S;(g, 71 = O) 
= S;(g), we have that the condition ofusual.unitarity reduces to 

i+ ! 
<0l& (g;rl(x))S2(g;rl(x))[O>=(O IS;+(g)S;(g)lO> = 1 (2.12) 

t+ t 
From (2.9) we see that (2.12) is indeed satisfied provided that < 0]R 2 (g)R2(g)10> = 
] s;O(g)[-2, which can be easily verified from (1.7). Let us point out that in 
deriving the equivalence of (2.12) with (2.8) at no place did we use explicitly 
the properties of the ordinary hadronic bremsstrahlung model. Thus the equi- 
valence of (2.12) to (2.8) holds generally, as long as we talk about self-inter- 
acting bosons. 

As mentioned' earlier, in hadronic bremsstrahlung models there are not 
secondaries in the initial state (at t ~ - ~ )  and consequently 

P2 = I0>(01 (2.13) 

Thus for the ordinary hadronic bremsstrahlung model 

E~(g) = S;(g)[ 0 > (0l (2.14) 

and indeed "~2"-,2 [0> <0 
Concerning the charge-conserving hadronic bremsstrahlung model, it is not 

difficult to see that [see (1.8)] S;'+(g) ~ t g )  1; i.e., the usual unitarity 
condition is not satisfied. However, production unitarity is satisfied: 

ZT(g) = S;'(g) ]0 > ( 0 1 (2.15) 
It+ t! Z~+(g)~-,~(g) = JO)<OJS2 (g)S2(g)lO>(O{ = lO)(OI 

II+ II provided that (0 [R 2 (g)R2(g) I 0 > = J S'2'(g) I -z, which can be directly verified. 
Thus in either case of  the ordinary or the charge-conserving hadronic brems- 
strahlung model, we have the same production unitarity. 

3. Production Causality 

In discussions of the usual conditions of causality on the S matrix, it is 
useful to introduce the notion of the space-time interaction region G (Bogoliubov 
and Shirkov, 1959), Such a notion is particularly applicable for strong inter- 
actions, where the interaction is confined in a volume of the order of magnitude 
of 1 fm 3 and it lasts for about 10 -23 sec. In the usual formulation of the 
condition of causality, one defines an interaction space-time region G by 
assuming the coupling constant g formally to depend on x and as such to be 
different from zero only in G. Next one divides region G into two separate 
subregions, G1 and G2, in such a way that all points of subregion G1 lie in the 
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past with respect to a certain time instant, t, while all points of subregion G2 
tie in the future with respect to t. This one formally denotes as G 2 > G a. 
Furthermore, writing g(x) as 

g(x) = g~(x ) + g2(x) (3.t) 
where gl(x) and g2(x) differ from zero only in Ga and G2, respectively, the 
usual condition of causality is then expressed as (Bogoliubov and Shirkov, 
1959). 

S(gl +g2) = s(g2)sfgl) for a2 > a, (3.2) 

There is no doubt that (3.2) describes the spirit of  the causality in the sense 
that any event occurring in the system may exert an influence on the evolution 
of the system only in the future. 

Condition of causality (3.2) is quite strong as far as the conservation laws 
are concerned: It demands that in each subregion-no matter how many of 
them we wish to visualize-the conservation law must hold if we wish it to hold 
in the whole space-time interaction region G, which is the only thing that we 
can actually verify experimentally. More specifically, in the case of charge 
conservation, (3.2) demands that when charged particles are produced, at 
least 2 of them (with total zero charge) must be produced from the same 
space-time point x, not both of them necessarily being real particles (for 
example, one could be a virtual particle that can travel to another region 
where the second real charged particle is produced). While, on the one hand, 
this is quite appealing as far as the charge conservation law goes, on the other 
hand, it also means that one cannot associate the creation of a single charged 
particle with a single subregion. However, to us it looks perfectly causal if in 
region G1, first, say, a negative particle is produced which now causes the 
production of a positive particle in region G2, so that the end result is the 
emergence of a positive-negative pair from the whole region G. 

By assuming the unitarity S+(g)S(.g) = 1 from (3.2) one can derive the 
causality condition in the "differential form" 

6g(y) S+ = 0 for x < y (3.3) 

where x < y means x 4 < y4 and (x - y)2 > 0. The interpretation of (3.3) is 
quite simple. The quantity S+6S/~g(x) cannot receive "communications" 
from points y which are either a spacelike distance from x or later than x. 
Instead of (3.3) one quite often writes the condition of causality in the 
"differential form" as 

IS + 6S ] =  < y  (3.4) 
~(bin(Y ) [ ~qSin(X) ] 0 for x 

where now for (3.4) we can make the interpretation that the quantity 
S+6S/6$in(X) cannot receive "communications" from a particle [associated 
with q~in(Y)] at space-time point y for which x 4 < y4 and (x - y ) Z  > 0. 
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In hadronic bremsstrahlung models we can think of colliding primary 
particles providing a space-time interaction region from which secondary 
particles emerge. As we already mentioned, the only accessible initial state 
of secondaries is a vacuum. As far as the ordinary hadronic bremsstrahlung 
model is concerned, however, one may assume any secondary particle state 
as an initial state at t -+ -oo (although physically we always talk of a vacuum 
as an initial state). Consequently, we expect S~ matrix (1.7) to obey causality 
conditions (3.2), (3.3), and (3.4). This indeed can be easily verified by writing 
(1.7) in equivalent form 

S~(g) = T exp ig S d4xj(x)~Oin(X) (3.5) 

In order to verify (3.2) and (3.3), one pulls g under the sign of the integral and 
writes it as g(x). Then by virtue of the time ordering operator T, one clearly 
has 

T exp i S d4x [g2(x) + gl(x)] j(x) ~in(X) 

= T[exp i f d4xg2(x)/(x)¢in(X)] T[exp i I d4ygl(Y)J(Y)Oin(Y)] 

for G2 > al (3.6) 
and ' 

6 [e '+  $2 ] _ _  (3.7) ~gCv ) [02 6-~--)j-  0 forx  Z y 

Similarly one shows that 

L [°2 ~ ) ]  =0 for anyx  and y (3.8) 
8~bin(V) 

We can now take into account that as far as the secondaries are concerned, 
the initial state at t -+ --oo is a vacuum. Thus instead of (3.6) and (3.7) we can 
now write [see (2.14)] 

E2(gl +g2) = S2(g2)E2(gl), for G 2 > G 1 

6 

5 [ ,+ss; 1_ 6g(y)[S2 ~ ] - 0 f o r x  < y  

However, it does not appear to be a simple matter to rewrite (3.8) in such a 
way as to involve E; = S;P2(P2 = I0 )(01). This is due to the fact that (for 
/°2 5/: 1) [~in(X), P2] :¢: 0, 6P2/~in(X ) 5/: 0. Consequently we conclude that once 
the number of accessible initial states at t ~ - ~  is restricted, causality con- 
ditions like (3.4) may be very difficult to formulate even if we have" formally 
S+S = SS + = 1 

Let us finally discuss the causality of the charge-conserving hadronic 
bremsstrahlung model. This model is of particular interest, since, unlike the 
ordinary hadronic bremsstrahlung model, it obeys the parity and charge con- 
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servation laws when the charged secondary pions are described by the charge 
number field operator (bin(X). S'2'(g) matrix (1.8), which describes the production 
of secondary charged pions, obeys only what we call production unitarity 
(2.15). Since causality conditions (3.3)and (3.4) rely on S+S = SS + = 1, we 
see that S~' cannot satisfy them. Nevertheless, we wish to see if at least formally 
the S~'(g) matrix satisfies some kind of causality, particularly in view of the 
fact that it does satisfy what we call the "macroscopic causality" S'2'(g = O) = 1 
(Soln, 1965). We notice that (1.8) can be rewritten as 

S'2' (g) = F(g)Q (g) 

[ ig2 ~ d4xd4x ' F(g) = [cosh ig 2 1 d4xd4x'(.~ *(x)A - x')w(x')]  -1/2 [exp ~- X 

~(X)&F(X -- X') Co(X')[ (3.9) X 

Q(g') = T cosh g ~ d4x~o(x)Ckin(2 

As we see, (3.9) gives the S'2' matrix as a product ofc  number F(g) and q number 
Q(g) which is properly time ordered by means of the T operator. Now what we 
are really interested in is Z~'(g) = S'2'(g)P2 (P2 = t 0 ) (0 r), see (2.15), which is 
given now as 

Y/2'(g) =F(g)a(g)[O)<0[ 

The transition amplitude from a vacuum to 2m charged pions is (with ki, i = i, 
. . . .  2m, denoting their momenta) 

, I t  I t  I 
( k l  . . . . .  k2m i ]~2(g) I 0 )  = (k l  . . . . .  ]f2m iS2(g)  J0)  

=F(g)(k l  . . . . .  k2rn I Q(g)[ 0) (3.10) 

From (3.10) we see that F(g) is the c-number multiplicative factor appearing 
in every matrix element which is essentially determined by Q(g). It is not 
difficult to see that the main role ofF(g) is to make the 2~(g) matrix obey 
production unitarity (2.15). It is quite clear that in view of the time-ordering 
operator T, Q(g) from (3.9) is causal at least on the formal level. Namely, in 
the matrix element (3.10), the "communications" from a particle associated 
with (bin(Y) cannot  be received by a particle associated with (bin(x) i fx  < y. 
We can also demonstrate the formal causality of Q(g) by pulling g's inside 
integrals and making them x dependent. Then (as at the beginning of this 
section) we divide the whole space-time interaction region G into the sub- 
regions, G 1 and G 2 (G2 > G1), where the space-time-dependent coupling 
constant g(x) = gl (x) + g2(x), with gl(x) ~ 0 in G~ and g2(x) 4:0 in G2. Then 
from (3.9) we have 

Q(gl + g2) = T cosh S d4xg(x)w(x)(bin(X) 

= Q(g2)Q(gl) + [Tsinh f d4xg2(x)~(x)(bin(X)] x 

x [T sinh S d4Xgl(x)cA(x)qSin(X)] for G 2 > G 1 (3. t l )  
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Relation (3.11) looks almost like (3.2) except that it has additional terms 
with sinh functions. Similarly one can divide the interaction space-time region 
G into any number of  subregions, G1, • •., Gn (Gn > Gn-I > " " ' > GD and 
again one would show that the formal causality of Q(g) holds. 

This type of causality, where the S matrix is causal up to a c-number factor 
relations (3.9)-(3.11), we shall call the production causality. This form of 
causality, like many other different forms of causality, may only be formally 
satisfied for specific situations. Namely, the concept of  the production 
causality for the S'~(g) matrix really only enters through the Q(g) matrix. 
Now if some Q(g) matrix elements are infinite, then the production causality 
has only a formal meaning since the concept of "communications" between 
particles becomes unclear. 

Before we analyze the causality properties of the S~ (g) matrix, let us note 
that in the matrix elements the pions are always on the mass shell (ki: = -#,r 2, 
i = 1 ,2 . . . ; / l , r  is the mass of the charged secondary pions). Now, when one 
calculates the mtfltiplicity distribution function for a secondary charged pion, 
the only integral that we need to evaluate is 

1 ~ d3k 
f d4xd4yco*(x)A +(x - y)coCv) - 2 i(27r) 3 J E ~  1 ~(k) 12 

E(~) = (k 2 + ~ 2 )  (3.12) 

where &(k) is the Fourier transform of co(x). Gemmel and Kastrup (1969) give 
an example of co(x) within the ordinary hadronic bremsstrahlung model 
[co(x) = i f (x ) , / (x )  real] for which &(k) is finite for k 2 = -/l~r 2 and for which 
the integral (3.12) is finite. Consequently, we shall assume that also in the 
case of the charge-conserving hadronic bremsstrahlung model the "pion source" 
function co(x) can be chosen in such a way that &(k) is finite and also that 
the integral of the type (3.12) can be made finite. 

The situation involving the production causality is quite different, since 
now we will have to get involved with &(k) also for k; 4: -/J~r 2 (pion momentum 
off the mass shell). Namely, from (3.9) we see that for the S'~(g) matrix to 
contain the time-ordering T operator, we acquired a new factor 

ig 2 
daxd4x'co(x)ZxF(X -x ' )co(x ' )  exp-~ 

C [  1 ;d3~~ ~ e `5 (-k) {5 (k)l 
= expT [ ~  jET~-} co(-/c) co (/c) + (2-7j-4 fd4/c ~ +/a, 2 

_1 
0.13)  

where the symbol P excludes those k's from the integral for which k 2 +/~r 2 = 0. 
Factor (3.13) is unobservable in the S~ (g) matrix elements, for it is canceled 
by the inverse of the same factor contained in Q(g) [compare (3.9) with (1.8)]. 
Consequently, if we wish to have Q(g) truly causal, factor (3.13) should be 
finite. Now, in the first term of (3.13) the integral is performed exclusively 
over the pion mass shell, and we shall assume that it can be made finite. In the 
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second term of (3.13) the integral is performed exclusively off the pion mass- 
shell, and it is this term that we wish to investigate more closely. First of all, 
we can write 

P _ 1  { 1 
tc 2+,u~ 2 [ E ( k ) - k  4 - i e ] [ E ( k ) + k  4 - i e ]  

+ [ E ( k ) - k  4 + i e ] [ E ( k ) + k  4+ie]  e ~ + 0  (3.t4) 

We see that as far as (3.14) is concerned, the integral along the real axis of k 4 
can be appropriately distorted and thus avoids the singularities at k 4 = +-E(k). 
However, if &*(k) = -+&(-k) [meaning that co(x) is either real or purely 
imaginary], then it is irrelevant what the singularity structure of &(k) is, for 
the second integral in (3.13) is real and as such contributes to (3.13) only a 
phase factor which is always finite. When &(x) is complex, one has to make 
sure that the imaginary part of the second integral in (3.13) is finite. This can 
be achieved only if the singularity structure of &(k) in variable k 4 does not 
cause pinching singularities, thus making the contour free for distortion. 

Finally, let us discuss the question of conservation laws. As far as the whole 
space-time interaction region G is concerned, the 2;~ matrix obeys the charge 
and parity conservation laws {one can easily show, for example, that [U, E~] = 0, 
where Uis defined by (1.10)). As a matter of fact, experimentally we can only 
observe conservation laws for the whole region G. In fact, (3.t 1) clearly shows 
that in the whole region G both charge and parity are conserved. However, in 
each of the subregions G~ and G 2, separately, neither parity nor charge is 
entirely conserved. Namely, while Q(g~) and Q(&) conserve charge and parity 
in G 1 and G2, respectively, 

Tsinh ~ d4Xgl(x)co(x)(Oin(X) 
and 

T sinh f d4xg2(x)co(x)~bin(X) 

violate both charge and parity conservation in G1 and G2, respectively. This, 
of course, is unobservable, and it should not pose a particular concern. Actually, 
here we see the spirit of causality: As soon as an odd number of charged secondary 
mesons are created within the subregion G1, they cause the creation of 
another odd number of secoedary charged mesons within the remaining sub- 
region G2, so that the total number of emitted charged secondary mesons from 
the total space-time region G is even. Since the created secondary charged pions 
within region G I are not constant for the fixed even number of produced 
secondary charged pions from region G, we see that some secondary particles 
from region G1 may actually be absorbed by region G> 

4. Discussion and Conclusion 

We have shown, at least as far as the hadronic bremsstrahlung models are 
concerned, that the usual concepts of unitarity and causality need not always 
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hold. We particularly expect this to be true in cases where we are unable to 
write down the equations of motion for Heisenberg fields, as, for example, the 
charge-conserving hadronic bremsstrahlung model. As a matter of fact, we 
believe that it is impossible to derive the S'~ matrix from some Lagrangian (or 
Hamiltonian) density operator (Soln, 1974a, b). 

As far as the production unitarity is concerned, its notion is not dramatically 
different from the notion of usual unitarity. The difference between them is 
that the usual unitarity assumes every state to be accessible as an initial state 
at t -+ -oo, while what we call the production unitarity assumes only a limited 
number of states (selected by some projection operator P) to be accessible as 
initial states at t ~ - ~ .  One can easily see that hadronic bremsstrahlung models 
demand by their construction only primary particles to be in the initial state. 
Thus, for hadronic bremsstrahlung models we will always have a vacuum as 
the initial state for secondary particles, and consequently the $2 matrix need 
only obey the production unitarity. We feel that the main reason the charge- 
conserving bremsstrahlung model is capable of conserving charge and parity 
is because the S~ matrix need obey only the production unitarity condition 
instead of the usual unitarity condition, as is the case with the ordinary 
hadronic bremsstrahlung model. 

The usual causality conditions (3.4) and (3.5) rely heavily on the ordinary 
unitarity condition S÷S = S S  + -- 1. Both causality conditions, although elegant, 
appear to be too stringent, for, on the one hand, they are not compatible 
with our production unitarity from Section 2 and, on the other hand, they 
impose conditions at very small distances, which is far beyond what we can 
learn from experience. In fact, consistent with (3.4) one can also write down a 
"natural" causality property of quantum field theory: the vanishing of field 
commutators at spacelike-separated points (x ~ y)  (see, for example, Horvath, 
1973) 

[4)(x), q~(y)] = 0 (4.1) 

where ~ is the Heisenberg field operator. However, this commutator causality 
not only imposes precise conditions at infinitely small distances (beyond 
experimental verification) but, being very stringent, may also lead to some 
mathematical inconsistencies (Stapp, 1974). 

As far as the ordinary hadronic bremsstrahlung model (1.7) is concerned, 
commutator causality (4.1) can be satisfied, for it is easy to construct the 
Heisenberg field associated with secondary pions as long as we do not restrict 
the number of initial states. However, for the case of the charge.conserving 
hadronic bremsstrahlung model (1.8) such a commutator causality cannot be 
accommodated, for here we must have restrictions on the initial states and 
construction of a Heisenberg field is simply not possible. This can also be 
seen from the fact that there is no Lagrangian from which the S'2'(g) matrix 
would follow (Soln, 1974a, b). 

It is interesting to note that the production causality requires an integral 
that is performed exclusively off the pion mass-shell in momentum variable 
[see relation (3.13)]. An evaluation of this integral is required only because 
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of the production causality. Consequently, it is only because of the production 
causality that we are required to specify the pion production amplitudes for 
the pion momenta off the pion mass shell [~(k) appearing in (3.13) is 
essentially the production amplitude of a single charged pion]. This one could 
consider to be a weakness of the production causality for it demands a know- 
ledge of pion production amplitudes at pion momenta not accessible by 
experiments. However, this weakness can be easily cured by choosing ~o(x), 
either real or purely imaginary, for now the behavior of ~(k)  for k 2 q: -/an 2 
becomes irrelevant [see the discussion after relation (3.13)]. Such simple cures 
are not possible for weaknesses of causality conditions such as (4.1) that 
impose precise conditions at infinitely small distances. The weakness of (4.1) 
is in the fact that it implies the analytic properties for the scattering amplitude 
only outside the physical region (Stapp, 1974). 

The surprising result from Section 3 is that for a charge-conserving hadronic 
bremsstrahlung model we do not necessarily have charge and parity conser- 
vation locally (i.e., at every instant in the course of interaction), while, of 
course, both charge and parity are conserved in the whole space-time inter- 
action region, as they should be (the ordinary hadronic bremsstrahlung model 
conserves charge and parity neither locally nor in the whole space-time inter- 
action region). One of the reasons why we do not have local charge and parity 
conservation is because we do not have a causality condition in the form [¢(x), 
¢(x')] = 0 for x ~ x '  [q~(x) being a Heisenberg field operator]. That is, the local 
conservation laws will rely heavily on the vanishing of field commutators for 
spacelike-separated points. However, as mentioned already, to demand [$(x), 
qS(x')] = 0 for x ~ x '  goes beyond what experience tells us. Consequently to 
demand that the conservation laws hold at every instant of strong interactions, 
instead of only for the whole interaction which lasts about 10 -23 sec, also goes 
beyond what experience tells us. 
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